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Reference-wave solution for the two-frequency propagator in a statistically homogeneous
random medium
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Spatial and temporal structures of ultrawide-band high-frequency fields can be appreciably affected by
random changes of the medium parameters characteristic of almost all geophysical environments. The disper-
sive properties of random media cause distortions in the propagating signal, particularly in pulse broadening
and time delay. Theoretical analysis of pulsed signal propagation is usually based on spectral decomposition of
the time-dependent signal and the analysis of the two-frequency mutual coherence function. In this work we
present a new reference-wave method and apply it to solving the equation of the two-frequency mutual
coherence function propagator. This method is based on embedding the problem into a higher-dimensional
space and is accompanied by the introduction of additional coordinates. Choosing a proper transform of the
extended coordinate system allows us to emphasize ‘‘fast’’ and ‘‘slow’’ varying coordinates which are conse-
quently normalized to the scales specific to a given type of problem. Such scaling usually reveals the important
expansion parameter defined as a ratio of the characteristic scales and allows us to present the equation being
solved as a hierarchy of terms having a decreasing order of expansion with respect to this parameter. We
present an analytical result for the two-frequency mutual coherence function propagating in a random medium
with arbitrary refractive index fluctuations and show that when approximating the transverse structure function
of the medium by a quadratic form, the solution reduces to the exact result derived previously. Extension of the
reference-wave method to the analysis of the pulse distortion effects is considered.
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I. INTRODUCTION

Attempts to improve the resolving abilities of modern r
dar, sonar, and other wave-based remote sensing sys
have stimulated the ongoing trend of the exploitation
ultrawide-band signals@1#. This trend also finds extensiv
support in communication engineering because of the
panding demands for high-data-rate communication ch
nels. The spatial and temporal structures of ultrawide-b
high-frequency fields can be appreciably affected by chan
of the medium parameters characteristic of almost all g
physical environments. For example, the propagation of e
tromagnetic waves is influenced by scattering and absorp
induced by the prevailing meteorological conditions, es
cially precipitation, by the effects of fluctuations in the r
fractivity of the atmosphere, and by the electronic concen
tion in the ionosphere. The occurrence of most such chan
is unpredictable, requiring the application of stochas
analysis.

The dispersive properties, characteristic of random me
cause distortions in the propagating signal, particularly
pulse broadening and time delay@2#. Theoretical analysis o
pulsed signal propagation, especially in a dispersive medi
must be based on spectral decomposition of the tim
dependent signal in order to solve a reduced equation for
time-harmonic field. Consequently, the space-time corr
tion properties are expressed as spectral integrals of the
1063-651X/2004/69~1!/016607~8!/$22.50 69 0166
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tistical moments of the wave field for different frequenci
and different positions. For example, the second-order sp
time statistical moment and the average intensity of pul
signal can be expressed as a spectral integral of the sp
two-frequency mutual coherence function~TFMCF!.

In order to describe the time evaluation of pulses
simple form, the mean arrival time and average pulse wi
are sufficient. The temporal moments can be estimated w
out needing to solve the equation for the TFMCF by us
the technique commonly used in quantum mechanics@3#,
which has also been adopted for random propagation p
lems @4–6#. This technique is based on knowledge of t
derivatives of the TFMCF for zero-frequency separation
has, however, a limited applicability and is suitable only f
the description of a simple form of pulse. In general, a d
scription based on the mutual two-frequency coherence fu
tion is required.

The exact solutions for the TFMCF have been obtain
for only two limiting cases. The first is valid for the regim
of weak intensity fluctuations@2#, and the second is based o
the approximation of the transverse structure function b
quadratic form@7–10#. A quantitative extension of the stron
fluctuation case can be made by using the exten
Huygens-Fresnel principle@11#. A two-scale asymptotic ex-
pansion procedure has been efficiently applied to solving
two-point coherence equations in complicated environme
@12–15#. This method has also been extended to the cas
©2004 The American Physical Society07-1
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the bichromatic coherence equation@16#. It was shown that
although the approach does not lead to a universal solutio
provides a good approximation for limited propagation d
tances and over a narrow frequency separation range
some cases the TFMCF equation can be transformed in
separable form and solved by using the modal expansion
various source excitations@17–19#. The similarity between
the equation for the parabolic-wave amplitude and Schr¨d-
inger’s equation describing the movement of a quantum p
ticle lead to the possibility of a description of wave prop
gation in random media by using the Feynman path-inte
solutions@20–23#. The path-integral solutions have been a
plied for construction of the expression of the TFMCF a
evaluated using the cumulant technique@24#. The path-
integral expression of the TFMCF has been also evaluate
using the variational principle@25#. In the Ref. @26# the
TFMCF has been computed by using the iterative expan
of an integral equation.

This work is based on a reference-wave method pre
ously developed for solving parabolic-type wave equatio
@27#. Here we apply it to solving the equation of the tw
frequency mutual coherence function. This method is ba
on embedding the problem into a higher-dimensional sp
and is accompanied by the introduction of additional coor
nates. Choosing a proper transform of the extended coo
nate system allows us to emphasize ‘‘fast’’ and ‘‘slow’’ var
ing coordinates which are subsequently normalized to
scales specific to a given type of problem. This scaling u
ally reveals the important expansion parameter defined
ratio of the characteristic scales and allows us to presen
equation being solved as a hierarchy of terms having a
creasing order of expansion with respect to this paramete
similar approach has been taken in the two-scale expan
procedure@12–15#. An equation for the paired field measu
was derived by using the parabolic-wave equation in a r
dom medium for the field component and its complex co
jugate, so that both components appear in the resulting e
tion symmetrically. This symmetry is preserved further wh
new transverse sum and difference coordinates are defi
We emphasize that in this work a nonsymmetric paired fi
function is defined. The first component is a solution of t
equation governing propagation in a perturbed mediu
while the second is a solution of a nonperturbed determi
tic equation. A solution of the deterministic equation, in pr
ciple, can be found. Application of the embedding metho
here, because of a lack of symmetry, requires that the tr
forms of the coordinate system will also be asymmetric.

The outline of this work is as follows. The problem
formulated in Sec. II. In Sec. III, we present the referen
wave method and apply it to the equation of the tw
frequency mutual coherence function. We show that in
case of a quadratic structure function, the expressions
rived by the reference-wave method are identical to the
sults obtained from an exact analytic solution of the equa
of the mutual two-frequency coherence function. In Sec.
we propose extending the reference-wave method to
analysis of the intensity fluctuations of time-dependent s
nals.
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II. FORMULATION OF THE PROBLEM

We consider a constant-background medium on which
superimposed a weak random partñ(r ,s). Such a random
medium is represented by the refractive index

N~r ,s!511ñ~r ,s!. ~1!

The statistical properties of the medium are assumed to
described by thed-correlated correlation function of the re
fractive index fluctuations:

Bn~r12r2 ,s12s2!5An~r12r2!d~s12s2!. ~2!

We start with a pulsed-wave source that radiates in so
preferred direction a pulse

f ~ t !5 f 0~ t !exp~ iv0t !, ~3a!

with the spectrum envelope

F~v!5E
2`

`

f ~ t !exp~2 ivt !dt ~3b!

centered around the frequencyv0 , which determines the im-
portant frequency band. We assume that the high-freque
propagation conditions are satisfied—i.e.,Dv!v0 , with Dv
being the radiation bandwidth of the time-dependent sig
~3!, andk,n@1, wherek5v/c is the radiation wave number

When the dispersive contributions of the background m
dium are weak, propagation of high-frequency tim
harmonic signals in spatially inhomogeneous media is in
itively related to the geometrical ray trajectories represent
the paths of energy flux transfer. We base our solution on
parabolic approximation along a straight background ray i
ray-centered coordinate systemR5$r ,s%, wheres measures
the range along the preferred direction andr5$x,y% is a
two-dimensional radius vector in the transverse plane p
pendicular to that direction. Extracting from the hig
frequency field the main phase variation along some re
ence ray,

U~r ,s!5u~r ,s!exp~2 iks!. ~4!

The spatial distribution of the source is assumed to be sp
fied at some initial planes0 perpendicular to the propagatio
direction and characterized by the field functionu0(r0 ,s0).

In order to perform the analysis of the propagation of t
time-dependent signals by taking into account the disper
properties of the random medium, it is suitable to decomp
the initial excitation into the spectral form and to consid
the propagation of each time harmonic componentu(r ,suv)
separately.

The total field at an arbitrary timet and location$r ,s% can
be represented as a superposition

C~r ,s,t !5
1

2p E
2`

`

F~v!u~r ,suv!exp@ ivt2k~v!s#dv.

~5!

The space-time correlation properties of the propagating
nal are determined from the correlation function
7-2
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REFERENCE-WAVE SOLUTION FOR THE TWO- . . . PHYSICAL REVIEW E 69, 016607 ~2004!
^C~r1 ,s,t !C* ~r2 ,s,t !&

5
1

~2p!2 E
2`

`

dv1E
2`

`

dv2F~v1 ,v2 ,s!,

G1,2~r1 ,r2 ,s!exp@ i ~v12v2!t#, ~6!

where

F~v1 ,v2 ,s!5F~v1!F* ~v2!exp$2 i @k~v1!2k~v2!#s%
~6a!

is the bilinear spectrum of the transient plane wave pro
gating in a homogeneous medium and measured at a dist
s from the source. The function

G1,2~r1 ,r2 ,s!5^U~r1 ,suv1!U* ~r2 ,suv2!& ~7!

is the mutual two-frequency coherence function@2#. The
mean intensity variation is obtained from Eq.~5! by taking
the same location for both signal components:

^I ~r ,s,t !&5
1

~2p!2 E
2`

`

dv1E
2`

`

dv2F~v1 ,v2 ,s!

3G1,2~r ,r ,s!exp@ i ~v12v2!t#. ~8!

According to Eqs.~6! and~8!, the mean shape of the prop
gating signal is determined by two factors. The first, the m
tual spectrumF(v1 ,v2 ,s), accounts for the distortion
caused by the dispersive character of the unperturbed
dium. The second, represented by the TFMCF, describes
loss of coherence between different spectral components
cause of the scattering of the random refractive index fl
tuations. In this work we concentrate on the second fac
We neglect completely the influence of the dispersive pr
erties of the medium on the strength of random scatte
because of the above narrow-band assumption. It has
shown thatG12(r1 ,r2 ,s) is a solution of the following equa
tion:

]G12~r1 ,r2 ,s!

]s
5S i

2k1
¹ r1

2 2
i

2k2
¹ r2

2 DG12~r1 ,r2 ,s!

2F~r12r2 ,k1 ,k2!G12~r1 ,r2 ,s!, ~9!

G12~r1 ,r2 ,s0!5G12
0 ~r1 ,r2!, ~9a!

with

F~s,k1 ,k2!5
1

2
@~k1

21k2
2!An~0!22k1k2An~s!# ~10a!

5
1

2
@~k12k2!2An~0!1k1k2Dn~s!#,

~10b!

where

Dn~s!52@An~0!2An~s!# ~11!
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is the structure function of the medium’s fluctuations whi
are assumed to bed correlated along the main propagatio
direction.

III. REFERENCE-WAVE SOLUTION

In order to solve Eq.~10! governing the propagation o
the two-frequency coherence function it is convenient
transfer to the center of mass and difference coordinates

p5
r11r

2
, s5r12r2 . ~12!

In the new coordinates Eq.~9! becomes

]G~p,s,s!

]s
5

i

2

k11k2

k1k2
“p•“sG~p,s,s!

2
i

8

k12k2

k1k2
¹p

2G~p,s,s!

2
i

2

k12k2

k1k2
¹s

2G~p,s,s!

2F~s,k1 ,k2!G~p,s,s!, ~13!

G~p,s,s0!5G0~p,s!. ~13a!

Next, we introduce the average wave numberk, the differ-
ence wave numberDk,

k5
k11k2

2
, Dk5k12k2 , ~14!

and the relative frequency mistuning parameter

V5
k12k2

k11k2
5

Dk

2k
. ~15!

Using these parameters and a point source boundary co
tion, Eq. ~14! reduces to the following form:

]G~p,s,s!

]s
5

i

k

1

12V2 “p•“sG~p,s,s!

2
i

k

V

12V2 ¹s
2G~p,s,s!

2
i

4k

V

12V2 ¹p
2G~p,s,s!

2k2Fs~s,V!G~p,s,s!, ~16!

G~p,s,s0!5d~p2p0!d~s2s0!, ~16a!

with the scattering function

Fs~s,V!5F2V2An~0!1
1

2
~12V2!Dn~s!G . ~17!
7-3
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We consider in parallel the following equation for the fun
tion:

]C~p1 ,s1 ,s!

]s
52

i

k

1

12V2 “p1
•“s1

C~p1 ,s1 ,s!

1
i

4k

V

12V2 ¹p1

2 C~p1 ,s1 ,s!

1
i

k

V

12V2 ¹s1

2 C~p1 ,s1 ,s!, ~18a!

C~p1 ,s1 ,s0!5d~p12p10!d~s12s10!. ~18b!

Next, we define a product

P~p,s,p1 ,s1 ,s!5G~p,s,s!C~p1 ,s1 ,s!. ~19!

The equation forP(p,s,p1 ,s1 ,s) is

]P

]s
5

i

k

1

12V2 ~“p•“s2“p1
•“s1

!P2
i

4k

V

12V2

3~¹p
22¹p1

2 !P2
i

k

V

12V2 ~¹s
22¹s1

2 !P

2k2Fs~s,V!P, ~20!

with

P~p,s,p1 ,s1 ,s0!5d~p2p0!d~s2s0!d~p12p10!d~s12s10!.
~20a!

Now we introduce the following new coordinates:

u5s1 , q5s2s1 , v5p1 , w5p2p1 . ~21!

In the new coordinates Eq.~20! for the function

P̄~u,q,v,w,s!5P~w1v,q1u,v,u,s! ~22!

becomes

]P̄

]s
5

i

k

1

12V2 ~“w•“u1“v•“q2“v•“u!P̄

2
i

2k

V

12V2 ~“w•“v14“q•“u!P̄1
i

4k

V

12V2

3~¹v
214¹u

2!P̄2k2Fs~q1u,V!P̄, ~23!

with

P̄~u,q,v,w,s0!5d~w1v2p0!d~q1u2s0!d~v2p10!

3d~u2s10!. ~23a!

The next step is a transfer to the spectral domain with res
to theu andv coordinates. Such a transfer is realized by
following transformations:
01660
ct
e

L~r,q,h,w,s!5E E d2ud2vP̄1~u,q,v,w,s!

3exp$2 ik~12V2!@r•u1h•v#%,

~24a!

P̄1~u,q,v,w,s!5H k~12V2!

2p J 4E E d2rd2hL

3~r,q,h,w,s!exp$ ik~12V2!

3@r,u1h•v#%. ~24b!

The equation forL(r,q,h,w,s) is

]L

]s
1H Fr2

V

2
hG•“w1~h22Vr!•“qJ L

5 ik~12V2!Fr•h2
V

4
~h214r2!GL

2k2FsS q1
i

k~12V2!
“r ,V DL, ~25!

L~r,q,h,w,s0!5d~w1p102p0!d~q1s102s0!

3exp$2 ik~12V2!@r•s101h•p10#%.

~25a!

Equations ~24! and ~25! can be solved by applying
asymptotic analysis. Such analysis assumes coordinate
ing with respect to the radiation wavelength and the len
scales characteristic of the refractive index spatial variati
The characteristic scales help us to expose the ‘‘fast’’ a
‘‘slow’’ variables with consequent ordering of terms and pr
senting the equation as an expansion into the power serie
the expansion parameter«51/(k,s) that represents the orde
of the single-scattering angle. Formally, this also can be d
to the nonscaled equation by expanding it into the inve
power series of the wave numberk. Expanding the scattering
function operator

FsS q1
i

k~12V2!
“r ,V D

into the power series of@ i /k(12V2)#“r leads to the follow-
ing first-order partial differential equation:

]L

]s
1H Fr2

V

2
hG•“w1~h22Vp!•“qJ L

2 ik“qAn~q!•“rL

5 ik~12V2!Fr•h2
V

4
~h214r2!GL2k2Fs~q,V!L,

~26!
7-4
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L~r,q,h,w,s0!5d~w1p102p0!d~q1s102s0!

3exp$2 ik~12V2!@r•s101h•p10#%,

~26a!

where we have used the explicit form of the scattering fu
tion in Eq. ~17c!. The third term in the left-hand side of Eq
~26! is of a smaller order of magnitude than the other term
We retain it because it represents the phase informa
along the rays and can be very important in the exponen
phase terms of the solution. However, it is less importan
the amplitude terms, and there it can be neglected.

Equation~26! can be solved by the method of charact
istics. Its characteristic equation are

dq

dz
5h22Vr, q~z5s!5qs , ~27a!
01660
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dr

dz
52 ik“qAn~q!, r~z5s!5rs , ~27b!

dw

dz
5r2

V

2
h, w~z5s!5ws , ~27c!

dh

dz
50, h~z5s!5hs , ~27d!

dL

dz
5H ik~12V2!Fr•h2

V

4
~h214r2!G2k2Fs~q,V!J L.

~27e!

The boundary condition for Eq.~27e! is the same as in Eq
~26a!. When the solutions of the characteristic equatio
~27a!–~27d! are known, Eq.~27e! can be expressed as
L5L„r~s0!,q~s0!,h~s0!,w~s0!,s0…expH ik~12V2!E
s0

s

dzFr~z!•h~z!2VS r2~z!1
h2~z!

4 D G J
3expH 2k2E

s0

s

dzFs„q~z!,V…J . ~28!

The expression presented by Eq.~28! can be simplified by using the explicit solutions for the characteristics:

L~rs ,qs ,hs ,ws ,s,s0!5d„w~s0!2p0…d„q~s0!2s0…exp$2 ik~12V2!@r~s0!•s101h~s0!•p10#%

3expH ik
~12V2!

4Q
@~12V2!hs

22~hs22Vrs!2#DsJ
3expH 2k2@~11V2!An~0!1~12V2!An~qs!#Ds12k2~12V2!E

s0

s

dzAn„q~z!…J , ~29!

whereDs5s2s0 . In order to find the desired solution we perform the inverse transform~25b! and setu50 andv50:

P̄1~u50,qs ,v50,ws ,s!5Fk~12V2!

2p G4E E d2rsd2hsd„w~s0!2p0…d„q~s0!2s0…

3expH ik
~12V2!

4V
@~12V2!hs

22~hs22Vrs!2#DsJ expH 22k2FV2An~0!2
1

4
~12V2!Dn~qs!GDsJ

3expH 2k2~12V2!E
s0

s

dzDn@q~z!#J . ~30!

The solution forw~z! andh~z! can be obtained directly from the characteristic equations~27!. This leads to

w~z!5
1

2V
@qs2q~z!#1ws1

12V2

2V
hs~z2s!, ~31a!

h5hs . ~31b!

Performing thehs integration in Eq.~30! and changing the integration variable tor5hs22Vrs , we obtain
7-5
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P̄1~u50,qs ,v50,ws ,s!5Fk2~12V2!

4p2Ds G2E E d2rd„q~s0!2s0…expH ik
~12V2!

4V
@~12V2!hs

22r2#DsJ
3expH 22k2FV2An~0!2

1

4
~12V2!Dn~qs!GDsJ

3expH 2k2~12V2!E
s0

s

dzDn„q~z!…J , ~32!

with

hs5
1

~12V2!Ds
$@qs2s0#12V~ws2p0!%. ~32a!

The desired solution for the mutual two-frequency coherence function can, in principle, be obtained directly from E~32!.
This requires the extraction of the solution for the reference wave propagating along characteristics~27! from Eq. ~32!. The
modulus of the amplitude of this reference wave can be obtained as a square root of the expression in Eq.~32! without the
scattering term:

C~p50,s50,u50,v50,s!5Fk2~12V2!

4p2Ds GU E E d2 rd„q~s0!…expF2
ikDs~12V2!r2

4V GU1/2

. ~33!
u

s
cu
p
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va
on

on
s
r-

he
ring

ave

for

g

lu-
For V50, the result of Eq.~33! with Eq. ~32! reduces to the
exact solution of the second-order coherence function eq
tion @2#.

Generally speaking, the reference-wave amplitude i
complex function and can be retrieved only in some parti
lar cases. Then the expression for the two-frequency pro
gator can be extracted directly: i.e.,

g1,2~p,s,sup0 ,s0 ,s0!

5P̄1~u50,qs5s,v50,ws5p,s!/C~u50,v50,s!.

~34!

For a source having an arbitrary spatial distributi
G1,2(p0 ,s0 ,s0), the two-frequency response at the obser
tion planes can be obtained directly from the propagati
relation

G1,2~p,s,s!5E E d2p0d2s0g1,2~p,s,sup0 ,s0 ,s0!

3G1,2~p0 ,s0 ,s0!. ~35!

In order to obtain an approximate result for the soluti
C(u,v,s), we note that it can be obtained by solving Eq
~25! and/or~26! without the scattering term along the cha
acteristics~27!, which leads to the solution~28! in which the
scattering term is omitted. In principle, Eqs.~27a! and~27b!
can be solved by direct differentiation of Eq.~27a! with re-
spect to the coordinatez. Then the use of Eq.~27b! leads to
the equation

d2q

dz222ikV“qAn~q!50. ~36!
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It must be noted thatC(u,v,s) represents an amplitude term
specified by the transport of the initial condition along t
characteristics. In most of the practical cases, the scatte
term in the characteristic equation~27b! is very small and
can be neglected. In such a case, the solutions of Eqs.~27!
and~35! are straight rays, and Eq.~23! for P is factorized as
a product of two reference waves. Then the reference-w
amplitude can be determined directly from Eq.~18! and is
equal to

C~u50,v50,s!5
k2~12V2!

4p2Ds2 . ~37!

The above approximation becomes even more relevant
large values ofq exceeding the correlation length,n , for
which the scattering term in Eqs.~27b! and ~36! vanishes
because of the rapid decay of the correlation functionAn(q).

The correction forq!,n can be estimated by expandin
the scattering functionAn(s) into the power series ofs. Then
the structure functionDn(s) in Eq. ~12! can be approximated
by a quadratic term

Dn~r !52A0S r

,n
D 2

. ~38!

This structure function allows us to obtain analytical so
tions for the characteristic equations~27!. This solution for
the coordinateq(z) is given by the following formula:

q~z!5qs cos@a~z2s!#1~rs /a!sin@a~z2s!#, ~39!

where
7-6
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a52AikVA0/,n . ~40!

Now, substituting the solutionq(s0) from Eq. ~39! into Eq.
~33!, we can extract the exact expression for the refere
wave:

C~u50,v50,s!5
k2~12V2!

4p2Ds

a

sin~aDs!
. ~41!

For the limit a→0, the expression in Eq.~39! approaches
that of a homogeneous medium.

The expression for the two-frequency propagator can
deduced directly from Eq.~32!:

g1,2~p,s,sup0 ,s0 ,s0!

5~12V2!S k2

2pDs D 2 aDs

sin~aDs!

3exp~22k2VA0Ds!expH ik

4VgDs
@~s2s0!

12V~p2p0!#2J expH ika~12V2!

4V sin~aDs!

3@~s21s0
2!cos~aDs!22~s•s0!#J . ~42!

Integrating Eq.~34! with Eq. ~42! and the plane-wave initia
condition, we obtain the following result:

F~s,s!5
1

cos~aDs!
expH 22k2V2A0Ds

1
ik~12V2!

4V
s2a tan~aDs!J . ~43!

This result coincides with the exact solution for the mutu
coherence function obtained for the two-frequency pla
wave propagating in a quadratic medium@7,8#.

We note that the solutions~42! and ~43! are exact solu-
tions of Eq.~17!, which gives us confidence that there is
additional phase term in the expressions~39! and~41! for the
reference wave.

IV. INTENSITY FLUCTUATIONS OF TIME-DEPENDENT
SIGNALS

The second-order statistical moments provide us with
average intensity of the propagating signal. In many pract
situations it is important to know the distortion of such s
nals and the higher-order correlation effects. Such inform
tion can be obtained by studying the behavior of the norm
ized intensity variance or the so-called intensity scintillati
index @2#:

b I
2~r ,s,t !5

^I 2~r ,s,t !&2^I ~r ,s,t !&2

^I ~r ,s,t !&2 . ~44!
01660
e

e

l
e

e
al

-
l-

This quantity has been extensively investigated in the
quency domain, but there are no results applicable for tim
domain propagation.

The average intensity can be obtained from the tw
frequency mutual coherence function investigated in the p
vious sections. The second-order intensity moment can
computed from the space-time domain fourth-order stati
cal moment of the field:

^Û~r1 ,t !Û* ~r2 ,t !U~r3 ,t !Û* ~r4 ,t !&

5
1

~2p!4 E
2`

`

¯E dv1dv2dv3dv4F~v1 ,v2!

3F~v3 ,v4!G4~r1 ,r2 ,r3 ,r4 ,suv1 ,v2 ,v3 ,v4!

3exp@2 i ~v12v21v32v4!t#. ~45!

This leads us to the requirement of solving the equation
the fourth-order multifrequency statistical mome
G4(r1 ,r2 ,r3 ,r4 ,suv1 ,v2 ,v3 ,v4):

]G4

]s
2

i

2 S 1

k1
¹ r 1

2 2
1

k2
¹ r 2

2 1
1

k3
¹ r 3

2 2
1

k4
¹ r 4

2 DG41
1

8
H4G4

50, ~46!

with the scattering function

H4~r1 ,r2 ,r3 ,r4!5~k1
21k2

21k3
21k4

2!An~0!

22k1k2An~r12r2!12k1k3An~r12r3!

22k1k4An~r12r4!22k2k3An~r22r3!

12k2k4An~r22r4!22k3k4An~r32r4!.

~46a!

Solving Eq. ~46! is beyond the scope of the present pap
and will be addressed in our future works. It can be no
that the reference-wave method as has been develope
solving the TFMCF equation can be directly applied also
Eq. ~46!.

V. SUMMARY

In this work, we have presented a reference-wave met
and demonstrated its performance by solving the parab
equation governing the propagation of the two-frequen
mutual coherence function. According to the spirit of t
method, we defined a nonsymmetric paired field function
a product of two components. The first component of t
function is a solution of the equation governing the propa
tion of the mutual two-frequency coherence function in
randomly inhomogeneous medium, while the second is a
lution of a complex-conjugate equation describing propa
tion in a medium in the absence of fluctuations. The diff
ence between these equations is in the scattering t
described by the functionFs in Eq. ~17c!. Because of the
lack of symmetry in the product equation, we applied t
asymmetric transform of the coordinate system in order
extract the possible difference in the phase and scatte
7-7
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information tracked along the characteristic trajectories.
ter the product equation is solved, the desired solution for
mutual two-frequency coherence function can be found p
suming that the solution of the nonperturbed equation for
reference wave is known. Here we found, however, two d
ficulties. The first arises from the fact that the reference co
ponent is being tracked along perturbed characteristic tra
tories, instead of the straight homogeneous background r
as a result of the coupling of perturbed and unpertur
equations. The second is the possible loss of phase info
tion while considering a product of two conjugate comp
nents.

In order to solve the first discrepancy, we note that
product measure in the absence of scattering repres
mainly the amplitude term even when being propaga
along the perturbed characteristic trajectories. Moreover,
perturbation term in the characteristic equation~27b! is neg-
ligibly small for most practical situations, because of t
strength of the scattering of the medium and, in additi
because of the rapid decay of the medium’s correlation fu
tion with an increase in the separation coordinateq. In this
case the solution of the product measure decouples into
two-frequency coherence functions in the absence of sca
ing, and the expression for the reference wave can be
tained from the unperturbed equation~18!. In the case of a
small separation argumentq in Eq. ~27b!, the correlation
function can be approximated by a quadratic expansion te
which allows one to obtain an exact analytical solution of
B.
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coherence equation without any loss of phase informat
For weak medium fluctuations, the ‘‘quadratic’’ approxim
tion result also reduces to the expression for the refere
wave in a free space. Therefore, for most of the import
situations, the expression for the reference wave can be
trieved as a solution of an unperturbed two-frequency coh
ence equation.

Comparing the result of the reference-wave method w
the results obtained in some recent works@24–26#, we note
that all of them present procedures for computing the sta
tical characteristics of time-dependent signals propagatin
a random medium. It is hard to compare the final formul
because different tasks have been addressed and diff
mathematical methods have been used. However, in
opinion application of the reference-wave method has s
eral advantages. First of all, it allows presenting an analyt
result, justified on the grounds of asymptotic expansion,
arbitrary spectra of the refractive index fluctuations. Seco
although all the procedures mentioned above lead to the
act result in the case of the ‘‘quadratic’’ approximation of t
refractive index structure function, only the expression in E
~32! solved along the dynamic characteristics~27! allows
analysis of the frequency correlation along the propaga
path for arbitrary fluctuations spectra.

As noted above, the reference-wave procedure can be
rectly extended to obtaining solutions for higher-order sta
tical moments.
h
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